Congestion

Presentation Outline

Evolution of Congestion

Definition of Congestion

Measurement of Congestion

Metric Examples

Influence of Metrics

The Evolution of Congestion

• The Pendulum Effect

Role of Speed and Cost

Role of Growth

presented by FEHR & PEERS

Definition of Congestion

- What is being measured?
 - Network performance

Definition of Congestion

Who is measuring it?	Focus
Public (drivers)	travel time and reliability
Planners and engineers	delay, speeds, or vehicle LOS
Economists	underpricing travel and public ownership of the network
Urban Economists	cost of proximity and density
Strategic Planners	access to destinations, travel choices, and livability

Definition of Congestion

- Perspectives, Preferences, and Priorities
 - Freight
 - Time-Sensitive
 - o People
 - Resident
 - Visitor
 - Commuter
 - Modes
 - Environment
 - Economy
 - Safety
 - Equity

TAHOE Regional Planning Agency

Measurement of Congestion

How is it being measured?

Vehicles

- Vehicle speeds compared to free-flow
- Vehicle volume compared to capacity
- o Vehicle delay

Seats

- Vehicle occupancy
- Seat utilization

Persons

- Person throughput
- o Person miles per lane mile
- Person delay

Metric Examples

- Travel Time
- Speeds
- LOS/Delay
- Seat Utilization
- VMT

Travel Time - Aggregate

AVERAGE TRIP

CHICAGO 13.5 miles

CHARLOTTE 19.0 miles

http://www.opr.ca.gov/docs/Driven Apart -Technical Report.pdf

Travel Time – Corridor

Single Occupancy Vehicles (SOV)

High Occupancy Vehicles (HOV)

Speeds

FIGURE 14 – I-80 WESTBOUND EXISTING CONDITIONS SPEED CONTOUR MAPS

AM PEAK PERIOD

LOS

To a driver: LOS A

To an economist: LOS F

To a driver: LOS F
To an economist: LOS A

LOS

TABLE 4: SIGNALIZED INTERSECTION LOS THRESHOLDS

LOS	Average Delay (sec/veh)	Description	
А	< 10	Very low delay occurs with favorable progression and/or short cycle length.	
В	> 10 to 20	Low delay occurs with good progression and/or short cycle lengths.	
С	> 20 to 35	Average delays result from fair progression and/or longer cycle lengths. Individual cycle failures begin to appear.	
D	> 35 to 55	Longer delays occur due to a combination of unfavorable progression, long cyclengths, or high volume-to-capacity ratios. Many vehicles stop and individual cyfailures are noticeable.	
E	High delay values indicate poor progression, long cycle lengths, and high volume-t capacity ratios. Individual cycle failures are frequent occurrences. This is considered be the limit of acceptable delay.		
F	> 80	Delays are unacceptable to most drivers due to over-saturation, poor progression, or very long cycle lengths.	

Notes: sec/veh = seconds per vehicle

Source: Fehr & Peers, 2014

LOS

AGENDA ITEM NO. V.A.

presented by FEHR ₹ PEERS

Seat Utilization

VMT

- VMT = volume x distance or vehicle trips x trip length
- Proxy for fuel consumption and emissions
- Travel and land use efficiency metric

VMT

• Type of VMT Matters

Influence of Metrics

- Manage demand
 - Physical
 - Operational
 - Behavioral
- Increase supply
 - Shrink the vehicles
 - Expand the network

Metric Influence Example

100% SmartCars
(loading video)

	Tradit Vehi		100% Smart Car		
	# of Vehicles	(5,223)	5,931	+14%	
	Delay (sec)	(175)	31	-82%	
	LOS	(F)	С		
	Fuel (gal)	(422)	187	-56%	
	CO (g)	(29,524)	13,091	-56%	
	NOx (g)	(5,744)	3,547	-56%	
Д	GENDA I	TEM,NO. V	.A. _{3,034}	-56%	

Thank You

• Ronald T. Milam, AICP, PTP r.milam@fehrandpeers.com

